
Face Recognition Vendor Test
Ongoing

General Evaluation Specifications
VERSION 2.0 DRAFT

Patrick Grother

Mei Ngan
Kayee Hanaoka

Information Access Division
Information Technology Laboratory

Contact via frvt@nist.gov

February 18, 2022

 1

mailto:frvt@nist.gov

FRVT Ongoing

NIST General Evaluation Specifications Page 1 of 9

Revision History 2

 3

 4

Date Version Description

April 1, 2019 1.0 Initial document

September 9, 2020 1.1 Update operating system to CentOS 8.2 and compiler to g++ 8.3.1

Adjust the legal similarity score range

February 14, 2022 1.2 Update operating system to Ubuntu 20.04.3 and compiler to g++ 9.3.0

February 18, 2022 2.0 Addition of Media structure (section 8.2) to support still and video imagery

 5

FRVT Ongoing

NIST General Evaluation Specifications Page 2 of 9

Table of Contents 6

1. Audience .. 3 7
2. Rules for Participation.. 3 8

2.1. Participation Agreement .. 3 9
2.2. Validation ... 3 10
2.3. Number and Schedule of Submissions ... 3 11

3. Reporting.. 3 12
3.1. Version Control... 3 13

4. Hardware specification .. 4 14
5. Operating system, compilation, and linking environment .. 4 15
6. Software and Documentation.. 5 16

6.1. Library and Platform Requirements ... 5 17
6.2. Configuration and developer-defined data.. 5 18
6.3. A Note on Training.. 5 19
6.4. Submission folder hierarchy ... 5 20
6.5. Installation and Usage .. 6 21
6.6. Documentation... 6 22
6.7. Modes of operation .. 6 23

7. Runtime behavior .. 6 24
7.1. Interactive behavior, stdout, logging ... 6 25
7.2. Exception Handling ... 6 26
7.3. External communication .. 6 27
7.4. Stateless behavior .. 6 28
7.5. Single-thread Requirement/Parallelization.. 6 29

8. Data structures supporting the API ... 7 30
8.1. Face Images .. 7 31
8.2. Media (still or video) .. 7 32
8.3. Data structure for eye coordinates .. 8 33
8.4. Template Role .. 8 34
8.5. Data type for similarity scores.. 8 35
8.6. Data structure for return value of API function calls ... 9 36

 37

List of Tables 38

Table 1 – Structure for a single image ... 7 39
Table 2 – Labels describing categories of Images .. 7 40
Table 3 – Structure for a set of images from a single person .. 7 41
Table 1 – Structure for a piece of media ... 7 42
Table 2 – Labels describing categories of Media ... 8 43
Table 4 – Structure for a pair of eye coordinates .. 8 44
Table 5 – Labels describing template role ... 8 45
Table 6 – Enumeration of return codes ... 9 46
Table 7 – ReturnStatus structure ... 9 47
 48

49

FRVT Ongoing

NIST General Evaluation Specifications Page 3 of 9

1. Audience 50

Participation in FRVT is open to any organization worldwide. There is no charge for participation. The target audience is 51
researchers and developers of FR algorithms. While NIST intends to evaluate stable technologies that could be readily 52
made operational, the test is also open to experimental, prototype and other technologies. All algorithms must be 53
submitted as implementations of the API defined in the specific test’s API document. 54

2. Rules for Participation 55

2.1. Participation Agreement 56

A participant must properly follow, complete, and submit the FRVT Participation Agreement. This must be done once, 57
either prior or in conjunction with the very first algorithm submission. It is not necessary to do this for each submitted 58
implementation thereafter UNLESS there are major organizational changes to the submitting entity. 59
 60
NOTE If an organization updates their cryptographic signing key, they must send a new completed participation 61
agreement submission for this evaluation, with the fingerprint of their public key. 62

2.2. Validation 63

Prior to submission, all participants must run their software through the provided corresponding validation package for 64
the test they wish to enter. The validation package will be made available at https://github.com/usnistgov/frvt. The 65
purpose of validation is to ensure consistent algorithm output between the participant’s execution and NIST’s execution. 66

2.3. Number and Schedule of Submissions 67

Participants may send one submission as often as every four calendar months from the last submission for evaluation. 68
NIST will evaluate implementations on a first-come-first-served basis, and quickly publish results. 69

3. Reporting 70

Unless otherwise specified for a specific test, for all algorithms that complete the evaluations, NIST will post performance 71
results on the NIST FRVT website. NIST will maintain an email list to inform interested parties of updates to the website. 72
Artifacts will include a leaderboard highlighting the top performing submissions in various areas (e.g., accuracy, speed 73
etc.) and individual implementation-specific report cards. NIST will maintain reporting on the two most recent algorithm 74
submissions from any organization. In the event an algorithm is no longer operable (e.g., license expiration, etc.), that 75
algorithm will be retired from the evaluation. Prior submission results will be archived but remain accessible via a public 76
link. 77
 78
Important: This is an open test in which NIST will identify the algorithm and the developing organization. Algorithm 79
results will be attributed to the developer. Results will be machine generated (i.e. scripted) and will include timing, 80
accuracy and other performance results. These will be posted alongside results from other implementations. Results will 81
be expanded and modified as additional implementations are tested, and as analyses are implemented. Results may be 82
regenerated on-the-fly, usually whenever additional implementations complete testing, or when new analysis is added. 83
 84
NIST may additionally report results in workshops, conferences, conference papers and presentations, journal articles and 85
technical reports. 86

3.1. Version Control 87

Developers must submit a version.txt file in the doc/ folder that accompanies their algorithm – see Section 6.4. The string 88
in this file should allow the developer to associate results that appear in NIST reports with the submitted algorithm. This 89
is intended to allow end-users to obtain productized versions of the prototypes submitted to NIST. NIST will publish the 90
contents of version.txt. NIST has previously published MD5 hashes of the core libraries for this purpose. 91
 92

https://github.com/usnistgov/frvt

FRVT Ongoing

NIST General Evaluation Specifications Page 4 of 9

4. Hardware specification 93

NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of 94
computer blades that may be used in the testing. Each machine has at least 128 GB of memory. We anticipate that 16 95
processes can be run without time slicing, though NIST will handle all multiprocessing work via fork()1. Participant-96

initiated multiprocessing is not permitted. 97

All implementations shall use 64 bit addressing. 98

NIST intends to support highly optimized algorithms by specifying the runtime hardware. There are several types of 99
computers that may be used in the testing. The following list gives some details about possible compute architectures: 100

• Dual Intel® Xeon® E5-2630 v4 CPU @ 2.20GHz (10 cores each)2 101

• Dual Intel® Xeon® E5-2680 v4 CPU @ 2.4GHz (14 cores each)2 102

• Dual Intel® Xeon® Gold 6140 CPU @ 2.30GHz (18 cores each)3 103

 104
All timing tests will be measured on Xeon R CPU E5-2630 v4 @ 2.20GHz processors. FRVT tests will not support the use of 105
Graphics Processing Units (GPUs). 106

5. Operating system, compilation, and linking environment 107

The operating system that the submitted implementations shall run on will be released as a downloadable file accessible 108
from https://nigos.nist.gov/evaluations/ubuntu-20.04.3-live-server-amd64.iso which is the 64-bit version of Ubuntu 109
20.04.3 LTS (Focal Fossa) running Linux kernel 5.4.0-91-generic. 110

For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must run 111
under Ubuntu 20.04.3. 112

NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide their library 113
in a format that is dynamically-linkable using the C++17 compiler g++ version 9.3.0. 114

A typical link line might be 115

g++ -I. -Wall -m64 -o frvt11 frvt11.cpp -L. –lfrvt_11_acme_007 116

The Standard C++ library should be used for development. Header files containing API function prototypes will be 117
provided separately for each FRVT track and documented in each of the corresponding API documents. 118

The header files will be made available to implementers at https://github.com/usnistgov/frvt. All algorithm submissions 119
will be compiled against the officially published header files – developers should not alter the header files when compiling 120
and building their libraries. 121

All compilation and testing will be performed on x86_64 platforms. Thus, participants are strongly advised to verify 122
library-level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid linkage 123
problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). 124

 125

1 http://man7.org/linux/man-pages/man2/fork.2.html
2 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse
sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf
eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe
popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pln pts dtherm tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdseed adx smap xsaveopt cqm_llc
cqm_occup_llc
3 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse
sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf
eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe
popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pln pts dtherm tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx avx512f rdseed adx smap clflushopt
avx512cd xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc

https://nigos.nist.gov/evaluations/ubuntu-20.04.3-live-server-amd64.iso
https://github.com/usnistgov/frvt

FRVT Ongoing

NIST General Evaluation Specifications Page 5 of 9

6. Software and Documentation 126

6.1. Library and Platform Requirements 127

Participants shall provide NIST with binary code only (i.e. no source code). The implementation should be submitted in 128
the form of a dynamically-linked library file. 129
 130
The core library shall be named according to “Implementation Library Filename” documented in each API document. The 131
library name will generally follow the convention: libfrvt_<track>_<provider>_<sequence>.so. Additional supplemental 132
libraries may be submitted that support this “core” library file (i.e. the “core” library file may have dependencies 133
implemented in these other libraries). Supplemental libraries may have any name, but the “core” library must be 134
dependent on supplemental libraries in order to be linked correctly. The only library that will be explicitly linked to the 135
test driver is the “core” library. 136
 137
Intel Integrated Performance Primitives (IPP) ® libraries are permitted if they are delivered as a part of the developer-138
supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. The use of IPP 139
libraries shall not prevent running on CPUs that do not support IPP. Please take note that some IPP functions are 140
multithreaded and threaded implementations are prohibited. 141
 142
Developers may obviously use common deep learning frameworks (e.g. Caffe, TensorFlow, etc.) and should submit those 143
dependencies as supplemental libraries. NIST has successfully received and run implementations leveraging such deep 144
learning frameworks in other evaluations with no issues. 145
 146
Do not include any standard libraries (e.g., libc.so, libgcc.so, etc.) that come with the operating system and/or compilation 147
environment in your submission. The NIST test harness will handle all image I/O, so do not include JPEG or PNG libraries 148
(i.e., libjpg.so, libpng.so) in your submission. If you need to include those libraries for other reasons, please contact NIST 149
prior to your submission. NIST will report the size of the supplied libraries. 150
 151
Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted 152
library name. 153

6.2. Configuration and developer-defined data 154

The implementation under test may be supplied with configuration files and supporting data files. NIST will report the 155
size of the supplied configuration files. 156

6.3. A Note on Training 157

NIST and the FRVT program do not train face recognition algorithms. We do not provide training data to software, and 158
software is prohibited from adapting to any data we pass to the algorithms. Training of face recognition algorithms is not 159
a turn-key operation; instead it is typically an extended process involving researchers curating suitable training sets, 160
establishing architectures and hyperparameters, and running trials over days or weeks, and then evaluating the 161
output. The result of such a process, which is often iterative, is usually a “trained model” i.e. static data and parameters 162
that can be saved and provided to NIST as an integral part of the black-box recognition engine. NIST does not support 163
training, because our tests seek to mimic operational reality and, there, algorithms are almost always shipped and used 164
“as is” without any training or adaptation to customer data. The representation of the face, as described by the “model”, 165
is fixed until the software is upgraded. 166

6.4. Submission folder hierarchy 167

Participant submissions shall contain the following folders at the top level 168

• lib/ - contains all participant-supplied software libraries 169

• config/ - contains all configuration and developer-defined data, e.g., trained models 170

• doc/ - contains version.txt, which documents versioning information for the submitted software and any other 171
participant-provided documentation regarding the submission 172

• validation/ - contains validation output 173

FRVT Ongoing

NIST General Evaluation Specifications Page 6 of 9

6.5. Installation and Usage 174

The implementation shall be installable using simple file copy methods. It shall not require the use of a separate 175
installation program and shall be executable on any number of machines without requiring additional machine-specific 176
license control procedures or activation. The implementation shall not use nor enforce any usage controls or limits based 177
on licenses, number of executions, presence of temporary files, etc. The implementation shall remain operable for at 178
least six months from the submission date. 179

6.6. Documentation 180

Participants shall provide documentation of additional functionality or behavior beyond that specified here. 181

6.7. Modes of operation 182

Implementations shall not require NIST to switch “modes” of operation or algorithm parameters. For example, the use of 183
two different feature extractors must either operate automatically or be split across two separate library submissions. 184

7. Runtime behavior 185

7.1. Interactive behavior, stdout, logging 186

The implementation will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the submitted 187
library shall: 188

− Not use any interactive functions such as graphical user interface (GUI) calls, or any other calls which require 189
terminal interaction e.g. reads from “standard input”. 190

− Run quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. 191

− Only if requested by NIST for debugging, include a logging facility in which debugging messages are written to a 192
log file whose name includes the provider and library identifiers and the process PID. 193

7.2. Exception Handling 194

The application should include error/exception handling so that in the case of a fatal error, the return code is still 195
provided to the calling application. 196

7.3. External communication 197

Processes running on NIST hosts shall not side-effect the runtime environment in any manner, except for memory 198
allocation and release. Implementations shall not write any data to external resource (e.g. server, file, connection, or 199
other process), nor read from such, nor otherwise manipulate it. If detected, NIST will take appropriate steps, including 200
but not limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 201
documentation of the activity in published reports. 202

7.4. Stateless behavior 203

All components in this test shall be stateless, except as noted. This applies to face detection, feature extraction and 204
matching. Thus, all functions should give identical output, for a given input, independent of the runtime history. NIST 205
will institute appropriate tests to detect stateful behavior. If detected, NIST will take appropriate steps, including but not 206
limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 207
documentation of the activity in published reports. 208

7.5. Single-thread Requirement/Parallelization 209

Implementations must run in single-threaded mode, because NIST will parallelize the test by dividing the workload across 210
many cores and many machines. Implementations must ensure that there are no issues with their software being 211
parallelized via the fork() function. Developers should take caution with checking threading when using third-party 212
frameworks (e.g., TensorFlow, MXNet, etc.). 213

FRVT Ongoing

NIST General Evaluation Specifications Page 7 of 9

8. Data structures supporting the API 214

The following section documents the common data structures used to support the C++ API functions for the various FRVT 215
tasks. The actual C++ API function prototypes themselves are documented separately for each test and are available on 216
the website for each track. 217

8.1. Face Images 218

An individual can be represented by K 1 two-dimensional facial images. 219

Table 1 – Structure for a single image 220

C++ code fragment Remarks
typedef struct Image
{
 uint16_t image_width; Number of pixels horizontally
 uint16_t image_height; Number of pixels vertically
 uint16_t image_depth; Number of bits per pixel. Legal values are 8 and 24.
 std::shared_ptr<uint8_t> data; Managed pointer to raster scanned data. Either RGB color or

intensity.
If image_depth == 24 this points to 3WH bytes RGBRGBRGB...
If image_depth == 8 this points to WH bytes IIIIIII

 Label description; Single description of the image. The allowed values for this field
are specified in the enumeration in Table 2.

} Image;

 221
An Image will be accompanied by one of the labels from the Label enumeration declared within the Image structure given 222
below. Face recognition implementations should tolerate Images of any category. 223

Table 2 – Labels describing categories of Images 224

Label as C++ enumeration Meaning
enum class Label {
 Unknown=0, Either the label is unknown or unassigned.
 Iso, Frontal, intended to be in conformity to ISO/IEC 19794-5:2005.
 Mugshot, From law enforcement booking processes. Nominally frontal.
 Photojournalism, The image might appear in a news source or magazine. The images are

typically taken by professional photographer and are well exposed and
focused but exhibit pose and illumination variations.

 Exploitation, The image is taken from a child exploitation database. This imagery has
highly unconstrained pose and illumination, expression and resolution.

Wild Unconstrained image, taken by an amateur photographer, exhibiting wide
variations in pose, illumination, and resolution.

};

 225

Table 3 – Structure for a set of images from a single person 226

C++ code fragment Remarks
using Multiface = std::vector<Image>; Vector of Image objects

8.2. Media (still or video) 227

A piece of media can contain a vector of K >= 1 still photographs or sequential video frames. 228

Table 4 – Structure for a piece of media 229

C++ code fragment Remarks
typedef struct Media
{

FRVT Ongoing

NIST General Evaluation Specifications Page 8 of 9

 Label type; Type of media
 std::vector<Image> data; Vector of still(s) or sequential video frames
 uint8_t fps; For video data, the frame rate in frames per second
} Media;

 230
A piece of Media will be accompanied by one of the labels from the Label enumeration declared within the Media 231
structure given below. 232

Table 5 – Labels describing categories of Media 233

Label as C++ enumeration Meaning
enum class Label {
 Image=0, Still photo(s) of an individual
 Video Sequential video frames of an individual
};

 234

8.3. Data structure for eye coordinates 235

The eye coordinates shall follow the placement semantics of the ISO/IEC 19794-5:2005 standard - the geometric 236
midpoints of the endocanthion and exocanthion (see clause 5.6.4 of the ISO standard). 237

Sense: The label "left" refers to subject's left eye (and similarly for the right eye), such that xright < xleft. 238

Table 6 – Structure for a pair of eye coordinates 239

C++ code fragment Remarks
typedef struct EyePair
{
 bool isLeftAssigned; If the subject’s left eye coordinates have been computed and assigned

successfully, this value should be set to true, otherwise false.
 bool isRightAssigned; If the subject’s right eye coordinates have been computed and assigned

successfully, this value should be set to true, otherwise false.
 uint16_t xleft; X and Y coordinate of the center of the subject's left eye. If the eye

coordinate is out of range (e.g. x < 0 or x >= width), isLeftAssigned
should be set to false, and the eye coordinates will be ignored.

 uint16_t yleft;

 uint16_t xright; X and Y coordinate of the center of the subject's right eye. If the eye
coordinate is out of range (e.g. x < 0 or x >= width),
isRightAssigned should be set to false, and the eye coordinates
will be ignored.

 uint16_t yright;

} EyePair;

8.4. Template Role 240

Labels describing the type/role of the template to be generated will be provided as input to template generation. 241

Table 7 – Labels describing template role 242

Label as C++ enumeration Meaning
enum class TemplateRole {
 Enrollment_11, Enrollment template for 1:1 matching

Verification_11, Verification template for 1:1 matching
 Enrollment_1N, Enrollment template for 1:N identification
 Search_1N Search template for 1:N identification
};

8.5. Data type for similarity scores 243

Identification and verification functions shall return a measure of the similarity between the face data contained in the 244
two templates. The datatype shall be an eight byte double precision real. 245

FRVT Ongoing

NIST General Evaluation Specifications Page 9 of 9

The similarity score values should be reported on the range that is used in the developer’s software products. Larger 246
values indicate more likelihood that the two samples are from the same person. However, we require scores to be non-247
negative. Developers often use [0,1], for example. Our test reports include various plots with threshold values e.g. 248
FMR(T), to allow end-users to set thresholds in operations. These plots may become difficult to interpret if scores span 249
many orders of magnitude. 250

Providers are cautioned that algorithms that natively produce few unique values will be disadvantaged by the inability to 251
set a threshold precisely, as might be required to attain a false match rate of exactly 0.0001, for example. 252

8.6. Data structure for return value of API function calls 253

Table 8 – Enumeration of return codes 254

Return code as C++ enumeration Meaning
enum class ReturnCode {
 Success=0, Success
 UnknownError, Catch-all error
 ConfigError, Error reading configuration files
 RefuseInput, Elective refusal to process the input, e.g. because cannot handle greyscale
 ExtractError, Involuntary failure to process the image, e.g. after catching exception
 ParseError, Cannot parse the input data
 TemplateCreationError, Elective refusal to produce a template (e.g. insufficient pixels between the

eyes)
 VerifTemplateError, For matching, either or both of the input templates were result of failed

feature extraction
 FaceDetectionError, Unable to detect a face in the image
 NumDataError, The implementation cannot support the number of images
 TemplateFormatError, Template file is in an incorrect format or defective
 EnrollDirError, An operation on the enrollment directory failed (e.g., permission, space)
 InputLocationError, Cannot locate the input data – the input files or names seem incorrect
 MemoryError, Memory allocation failed (e.g., out of memory)
 MatchError, Error occurred during the 1:1 match operation
 QualityAssessmentError, Failure to generate a quality score on the input image
 NotImplemented, Function is not implemented
 VendorError Vendor-defined failure. Vendor errors shall return this error code and

document the specific failure in the ReturnStatus.info string.
};

 255

Table 9 – ReturnStatus structure 256

C++ code fragment Meaning
struct ReturnStatus {
 ReturnCode code; Return Code
 std::string info; Optional information string
 // constructors
};

 257

 258

259
260

 261

	1. Audience
	2. Rules for Participation
	2.1. Participation Agreement
	2.2. Validation
	2.3. Number and Schedule of Submissions

	3. Reporting
	3.1. Version Control

	4. Hardware specification
	5. Operating system, compilation, and linking environment
	6. Software and Documentation
	6.1. Library and Platform Requirements
	6.2. Configuration and developer-defined data
	6.3. A Note on Training
	6.4. Submission folder hierarchy
	6.5. Installation and Usage
	6.6. Documentation
	6.7. Modes of operation

	7. Runtime behavior
	7.1. Interactive behavior, stdout, logging
	7.2. Exception Handling
	7.3. External communication
	7.4. Stateless behavior
	7.5. Single-thread Requirement/Parallelization

	8. Data structures supporting the API
	8.1. Face Images
	8.2. Media (still or video)
	8.3. Data structure for eye coordinates
	8.4. Template Role
	8.5. Data type for similarity scores
	8.6. Data structure for return value of API function calls

